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Abstract
MINIMAL RESTRAINED DOMINATION ALGORITHMS ON TREES USING DYNAMIC
PROGRAMMING
Jeremy Booker

B.S., Appalachian State University
M.S., Appalachian State University

Chairperson: Alice A. McRae

In this paper we study a special case of graph domination, namely minimal restrained
dominating sets on trees. A set S € Vis a dominating set if for every vertex u € V — §, there
exists v € S such that uv € E. A set S € Vis a restrained dominating set if every vertexin VV — S is
adjacent to a vertex in S and another vertex in V — S. A restrained dominating set S is a minimal
restrained dominating set if no proper subset of S is also a restrained dominating set. We give a
dynamic programming style algorithm for generating largest minimal restrained dominating
sets for trees and show that the decision problem for minimal restrained dominating sets is NP-
complete for general graphs. We also consider independent restrained domination on trees and

its associated decision problem for general graphs.
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Chapter 1: Introduction

1.1 Purpose and History

Let G = (V, E) be a graph. A set S € Vis a dominating set in a graph if for every vertex u €
V — S, there exists v € S such that uv € E. In other words, a set is a dominating set if every
vertex not in the set is adjacent to a vertex in the set. Dominating sets have been studied
extensively in graph theory. In 1990, Hedetniemi and Laskar published a bibliography of graph
domination with more than 300 citations [8]. By 1998, the textbook Fundamentals of
Domination in Graphs listed a bibliography with more than 1000 entries [7]. In 2006,
Hedetniemi published a list of several hundred graph domination problems that remained
open. One of the problems listed was minimal restrained domination [6]. This thesis addresses
this open problem.

In graph domination theory, the notation y(G) is used to denote the cardinality of a
minimum dominating set in a graph G. The most studied variation of the domination number is
the independent domination number. In an independent dominating set, no two vertices in the
dominating set can be adjacent. The cardinalities of a minimum and maximum independent
dominating set in a graph are denoted by i(G) and B(G), respectively. The famous eight queen’s
chessboard problem is an example of maximum independent dominating problem.

There also is a maximum version of the dominating set problem. The entire set of
vertices Vin a graph is a dominating set, by the definition of dominating set, so the maximum
domination problem is not very interesting. Instead, what is studied is the maximum minimal
dominating set problem—the problem of finding a largest dominating set in which no proper

subset is also a dominating set. Each vertex v in a minimal dominating set must have a purpose;



there must be at least one vertex w that would not be dominated if v were removed from the
set. If a vertex w is dominated by only one vertex v in a set S, then w is called a private neighbor
of v. A vertex v that is in S, but has no other neighbors in S, is said to be its own private
neighbor. A dominating set S is minimal if every vertex in S has at least one private neighbor.

A set S € Vis arestrained dominating set if every vertex in V — S is adjacent to a vertex
in S and another vertex in V — S. The notion of a restrained dominating set was first defined by
Telle [9] in 1994 and then expanded further by Domke, Hattingh, Hedetniemi, Laskar and
Markus [2]. The restrained domination number of a graph G, denoted y:(G), is the cardinality of
a minimum restrained dominating set. The works of Telle and Domke et. al. focused on this
graph parameter. A restrained dominating set S is a minimal restrained dominating set if no
proper subset of S is also a restrained dominating set. The minimal restrained domination
number of a graph G, denoted I';(G), is the cardinality of the largest minimal restrained
dominating set.

The decision problem for the minimum restrained domination number of a graph has
been shown to be NP-complete for bipartite and chordal graphs [2]. A linear-complexity
algorithm for finding the minimum restrained domination number of a tree is given in [2]. For
general graphs and trees, however, the minimal restrained domination number is an open
problem [6]. In [6], Hedetniemi challenged readers with the problems of finding a linear
algorithm for trees for minimal restrained domination and an NP-completeness proof for
minimal restrained domination in general graphs.

Using dynamic programming techniques, this thesis provides a linear algorithm for
finding the largest minimal restrained dominating set for trees. It also shows that minimal
restrained dominating set is NP-complete for general graphs.

Some variations of NP-hard domination problems have polynomial solutions when

there is an additional requirement that the dominating set is also an independent set. We did



not find any references to independent restrained domination in the literature, and this
problem was examined first, since it is potentially easier. This thesis first explores the notion of
an independent restrained dominating set in a graph. We will show that not all graphs have
independent restrained dominating sets, and even the problem of determining if a graph has an
restrained independent dominating set is NP-complete. We also provide a linear algorithm for

determining if a tree has an independent restrained dominating set.

1.2 Applications of Restrained Domination

A possible application for minimal restrained dominating sets is any situation in which
one group needs to supervise a subordinate group using the minimal number of supervisors
possible, but at the same time ensure the supervisors are held accountable by never allowing a
supervisor to be alone with subordinate. Hattingh gives an example of this relationship in terms
of guards and prisoners [5]. The vertices in S are the guards, while the vertices in V — S are the
prisoners. In this way, a guard can supervise every prisoner, but every prisoner is also in view
of another prisoner.

A possible application for independent restrained dominating sets is the location of
product distribution centers or hospitals where a certain level of redundancy is desired. In this
case, vertices could represent cities. Vertices in S represent cities with a distribution center and
edges represent transportation routes between cities. Selecting the cities in which to place
distribution centers using an independent restrained dominating set guarantees that every city
without a distribution center is at least next to a city with one. It also guarantees that every city
without a distribution center has a neighbor that also lacks a distribution center. In case of
shortages at one distribution center, every city has access to a different center by going through

one of its neighbors.



Chapter 2: Background

In this chapter, common graph theory terms used throughout this thesis are defined.
2.1 Graph Definitions

Definition 2.1: A graph G is a set V of vertices, and a set E of edges.

Definition 2.2: The degree of a vertex v is the number of edges connected to the vertex.
Definition 2.3: A subgraph of graph G is any graph H where V(H) € V(G) and E(H) € E(G).
Definition 2.4: A tree, T, is a connected acyclic graph.

Definition 2.5: A leaf is a vertex v in a tree graph where v has degree equal to 1.

Definition 2.6: The open neighborhood of a vertex v in a graph G, denoted as N (v), is the set
of all vertices adjacent to v.

Definition 2.7: The closed neighborhood of a vertex v in a graph G, denoted as N[v], is the set
of vertices v U N (v).

Definition 2.8: The closed neighborhood of a set of vertices S in a graph G, denoted N[S], is the
union of the set S and the vertices in N[v] Vv: v €S.

Definition 2.9: For a graph G=(V, E) and a set S C V, a vertex w is a private neighbor of a vertex
vif Nflw]N S = {v}.

Definition 2.10: A graph G is a bipartite graph if it is possible to partition V(G) into two subsets,
Vi and V3, such that every element of E(G) joins a vertex of V; to a vertex of V2 [1].

Definition 2.11: An independent set on a graph G is a set of vertices S such that no vertex in S is

adjacent to another vertex also in S.



Definition 2.12: A set S € Vis a dominating set if for every vertexu € V — S, there existsv € S
such that an edge uv € E.

Definition 2.13: The minimum cardinality of a dominating set on a graph G is the domination
number of G and is denoted by y(G).

Definition 2.14: A minimal dominating set on a graph G is a set of vertices S such that no
proper subset of S is also a dominating set.

Definition 2.15: The maximum cardinality of a minimal dominating set on a graph G is the
upper domination number and is denoted by I(G).

Definition 2.16: A set S € Vis a restrained dominating set if every vertex in V — S is adjacent
to a vertex in S and another vertexinV — S.

Definition 2.17: A minimal restrained dominating set S on a graph G is a restrained
dominating set S have the property that no proper subset of S is also a restrained dominating

set.



Chapter 3: Independent Restrained Dominating Set

We first will use the independent restrained dominating set problem as an introduction
to the methods used in Chapter 4. We will consider a dynamic programming technique to create
an algorithm for the independent restrained dominating set on trees. We then offer a proof of

the problem’s NP-complete status for general graphs.

3.1 Definition and characterization

An independent restrained dominating set is an independent set S such that Vv € V —
SSNW)NS #@and N(V) n (V —S) # @.In other words, no two vertices in S are adjacent, and
every vertex not in S must have at least one neighbor in S and at least one neighbor not in S.

Several observations can be made.

Lemma 3.1  All vertices with deg(v) = 1 must be in S.
Proof.
Every vertex where deg(v) = 1 must be a member of the restrained dominating set

because, having only one neighbor, it cannot have both a neighbor in § and a neighborin VV — S.

Lemma 3.2  Notall graphs have an independent restrained dominating set.
Proof.

Not all graphs will contain an independent restrained dominating set. For example,
there is no way to form an independent restrained dominating set on a path on three vertices
because the vertices on each end of the path have only one neighbor and must therefore be in S.

This leaves the middle vertex without a neighborin V — S.



3.2 Dynamic Programming Algorithm for Trees

Our algorithm uses a dynamic programming method to find independent restrained
dominating sets for trees. Dynamic programming algorithms break a problem into simpler sub-
problems and then combine the results to solve the larger problem.

We apply this method to restrained dominating sets on trees by breaking the problem
into a finite set of trees corresponding to different types of independent restrained dominating
set solutions, which represent the base-cases for all trees. We call the various solution types
“classes.” When the algorithm begins, all vertices are considered as singleton vertices in a forest
of sub-trees. For each vertex, we also store a corresponding vector holding the cardinalities for
each type of possible solution set. We then take a bottom-up approach to build larger sub-trees
by composing two smaller sub-trees and their subsets into a single, larger tree. Two properties
of the minimal restrained dominating set problem allow us to apply this method to tree graphs.
First, the problem has an optimal substructure. That is, the problem can be recursively reduced
to smaller problems, which can be solved more easily. Second, once the problem is reduced in
this manner, we can arrive a finite set of base cases, which can then be continually reused. This
methodology was first described by Wimer [10].

We define the composition of two tree-subset pairs as follows. Let (T, r, S) represent a
tree T = (v,e) rooted at r withasetS € V(T). The composition of two tuples, denoted

(Ty, 71, S1) ° (Ty, 12, S3) = (VL UV,,Ef UE, U {1y,13}), 11, S; US,). In other words, the
roots of the two trees are joined by an edge from r1 and r2 and the corresponding sets are
unioned with the root r; as the new root. An illustration of an example composition is given in

Figure 1. Each vertex that is a member of a set is shaded black.



Figure 1. Example composition of subgraphs

The algorithm begins with a rooted tree and compositions are performed from the
leaves to the root. A node is composed with its parent only when all of its subtree has been
completed. In order to construct our dynamic programming algorithm, we must characterize all
of the possible base-cases of tree and subset pairs. For this algorithm, there are five classes of
tree and set pairs, which are illustrated in Figure 2. Each vertex that is a member of the subset
is shaded black.

Class 1 describes sets with the root in S. The other classes deal with rootsinV — §. In
these cases, we are interested in making sure that eventually the vertex has a neighbor in S and
aneighborin V — S. In class 2, the root has at least one neighbor in S but none in V — S. Class 3
describes sets where the root has at least one neighbor in V — S but none in S. In class 4, the
root has neighbors in both S and V — S. Finally, in class 5, the root has no neighbors. It is
important to note that each base graph describes an entire class of graphs. Any solution from

one of these classes could be replaced by another solution from the same class of graph.



Class 1

Class 2

Class 3

;
Class 4 g
5

Class 5 O

Figure 2. Base subgraphs for Independent Restrained Dominating Set

Next, we consider the effects of composing a graph from each class with another graph
of each class. We must determine if the two graphs and their corresponding sets can be
composed, and if so, to which class the resulting graph belongs. Table 1 gives the results of
composing each of the base classes with each other for the five classes given in Figure 2. In this
table, an X’ is used to denote a composition which was not possible because the resulting tree-

subset pair did not form an independent restrained dominating set.
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Table 1. Class composition for Independent Restrained Dominating Set

1 2 3 4 5
1 X X 1 1 X
2 2 4 X 4 X
3 4 3 X 3 X
4 4 4 X 4 X
5 2 3 X 3 X

To demonstrate the correctness of the compositions table, we prove a lemma asserting

each composition is correct.

Lemma 3.3 A class one subgraph cannot be composed with a class one child subgraph, denoted
[1] o [1] = X.
Proof.
Since both roots are in S, the resulting composition is not be independent. Note the

entry in Table 1 is an ‘X’ for this composition.

Lemma 3.4  Class five subgraphs cannot be composed as a child subgraph.
Proof.
Since this leaves the class five subgraph as a leaf vertex with deg(v) = 1in V — §, it either

will not be dominated or it will not have a neighbor in V — S. See Lemma 3.1.

Lemma 3.5  Class three subgraphs can only be composed as a child of a class one parent graph.
Proof.
Since the root vertex of a class three subgraph is not dominated, it can only be

composed with a class where the root node is an element of S. The only class that meets this
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criterion is class one. Composing a class three subgraph as a child of any other class will result

in the root of the class three graph not being dominated.

Lemma 3.6 [1] o [2] is not a restrained dominating set.
Proof.
When composed with a class one subgraph, the root of a class two subgraph does not

have a neighborinV — S.

Lemma 3.7 [1]0[4] =]1]
Proof.

The root vertex of a class one subgraph is an element of S, so when it is composed as a
parent with a class four subgraph, the root vertex of the resulting composition is still an
element of S. All vertices are dominated and are independent, and every vertex in V — S has a

neighborinV — S.

Lemma 3.8 [2]0[1] =]2]
Proof.

The root vertex of a class two subgraph is not an element of S, so when it is composed as
a parent with a class one subgraph, the root vertex of the resulting composition still is not an
element of S. All vertices are dominated and are independent, and every vertex in V — S has a

neighborinV — S.

Lemma 3.9 [3]c[1] =[4] and [4] o [1] = [4]
Proof.

A class three subgraph composed with a class one subgraph forms a class four
subgraph, which can be seen by inspecting the prototypes in Figure 2. A class four parent

subgraph composed with a class one subgraph has the effect of only adding another dominating
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vertex to the root vertex. All vertices are dominated and are independent, and every vertex in

V — S has aneighborinV — S.

Lemma 3.10 [5] o [1] =[2]
Proof.

This composition can be seen by inspecting the prototypes in Figure 2.

Lemma 3.11 [2] o [2] = [4]
Proof.
This composition can bee seen by inspecting the prototypes in Figure 2. All vertices are

dominated and are independent, and every vertex in V — S has a neighborin VV — S.

Lemma 3.12 [4] o [2] = [4]
Proof.

The root of the parent vertex is an element of V — S, so the root of the resulting
composition is also an element of V — S. The root of the resulting composition is still dominated

by a child vertex.

Lemma 3.13 [3] o [2] = [3] and [5] » [2] = [3]
Proof.

The composition of [3] o [2] = [3] adds additional child vertices, but no child vertex
dominates the root vertex. The composition of [5] o [2] forms a prototypical class three

subgraph, as seen in Figure 2.

Lemma 3.14 [2] o [4] = [4]
Proof.
The child vertex from the class two parent subgraph dominates the root vertex, while

the class four subgraph gives the root a neighbor in V — S, which qualifies the resulting
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composition as a class four subgraph. All vertices are dominated and are independent, and

every vertex in I/ — S has a neighborinV — S.

Lemma 3.15 [3] o [4] = [3]
Proof.

The root of the resulting subgraph is not dominated, but the root does have neighbors in
V — S, which qualifies the resulting subgraph as a class three subgraph. All vertices are

dominated and are independent, and every vertex in V — S has a neighborin VV — S.

Lemma 3.16 [4] o [4] = [4]
Proof.
The root node of the resulting subgraph is dominated and the root has neighbors in
V — S. All vertices are dominated and are independent, and every vertex in V — S has a neighbor

inV —S.

Lemma 3.17 [5] o [4] = [3]
Poof.

The root node of the resulting subgraph is not dominated and the root has neighbors in
V — S. All vertices are dominated and are independent, and every vertex in V — S has a neighbor

inV —S.

The last step in designing the algorithm is to define an initial vector of cardinalities and
determine the valid final classes. We must determine the classes of solutions possible for a
single vertex. A singleton vertex v could be an element of S, which is a class one solution, or if v
is not an element of S then it would be a class five solution. Thus, the initial vector is [1, -, -, -, 0],

where ‘- means undefined. Classes 2, 3, and 4 sets cannot be formed from a single vertex.
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The input to the algorithm is an array of parent vertices parent[1...p] for the input tree,
and the output is the cardinality of the largest independent restrained dominating set. Before
the algorithm begins, every vertex is associated with the initial vector given above. The
algorithm can then be defined as follows:

Algorithm: Independent Restrained Dominating Set

for i=p to n do
begin;
vector[i] = [1, -, -, -, 0];
end;
for i=p downto 2 do
begin;
j = parent[i];

vector[j,1]

max (vector[j,1]+vector[i,3], vector[j,l]+vector[i,4]);

vector[j,2]

max (vector[j,2]+vector[i,1], vector[j,5]+vector[i,1]);

vector[j, 3]

max (vector[j,3]+vector[i,2], vector[j,3]+vector[i,h4],

vector[j,5]+vector[i,2], vector[j,5]+vector[i,4]);

vector[j,4] max (vector[j,2]+vector[i,2], vector[j,2]+vector[i,h4],
vector[j,3]+vector[i,1l], vector[j,4]+vector[i,h 1],
vector[j,4]+vector[i,2], vector[j,4]+vector[i,4]);

vector[j,5] -

end;

if(vector[1,1] is undefined AND vector[1,4] 1is undefined)
return ‘no independent restrained dominating set’;

endif;

return max(vector[1l,1], vector[l,4]);

Note, the root vertex of the final parent tree must be handled differently. Some solution
classes are allowed for sub-trees because they represent partial solutions that may be
completed by a later composition; however, the final solution set for the root must be a

complete solution. Only classes one and four represent complete solutions.
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The algorithm above finds a maximum cardinality independent restrained dominating
set. By selecting the minimum cardinality of each composition choice, the algorithm could find a

minimum cardinality independent restrained dominating set.

3.3 NP-Completeness of Independent Restrained Dominating Set

Independent Restrained Dominating Set

Instance: A graph G = (V, E)

Question: Does G have an independent restrained dominating set?
Theorem 3.1. Independent Restrained Dominating Set is NP-complete.
Proof.

Independent Restrained Dominating Set is in the class NP. A witness for Independent
Restrained Dominating Set is a set S of vertices on a graph G. We can verify that S is an
independent restrained dominating set in polynomial time by verifying that every vertex in
V — S has at least one neighbor in S and at least one neighbor in V(G) — S, and that S is
independent. Our transformation is from the well-known NP-complete Satisfiability (SAT)
problem [3].

Satisfiability
Instance: A set U of variables and a collection C of clauses over U.

Question: Does there exist a satisfying truth assignment for C ?

Given an instance of SAT with a set U of variables and a set C of clauses, generate a
corresponding graph with components as follows:
Clause Components:

V¢; € C construct a clause component such that:
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V(e = { ¢, ¢z ¢j3)
E(c)) ={ (¢ ci2), (¢ ¢3)}
Variable Components:
VYu; € U construct a variable component such that:
V(U) = {uy, uy, xi}
E(U) = {{u;, wi }, {wi, xi}, {ug xi 3}
Communication Edges:

For each clause c;, add edges from cj; to the literal vertices in the variable components that

correspond to the literals in the clause c;.

Clause Components

Variable Components

X X X3

Figure 3. Example construction for Independent Restrained Domination

Figure 3 gives an example of these components in a construction for an instance of SAT
where U = {uq, uy, us} and C = {{uy, uy, us}, {uq, uz, uz }, {ug, uz, uz}}. We show that there is a

truth assignment for SAT if and only if G has an independent restrained dominating set.
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Given a truth assignment f:u — {T, F} for the instance of SAT, we will find an
independent restrained dominating set by selecting one vertex from each clause component,
namely c;3, and one vertex from each variable component, namely u; if f(u;) = true or
i, if f(u,) = false. Each vertex is dominated: the entire variable component is dominated by its
selected element (u; or i), ¢z and cj3 by cj3, and ¢j1 is dominated by a vertex corresponding to a
true literal in the variable component. No two vertices in S are adjacent and every vertex in
V — S has a neighbor in V — S. In the example from Figure 3, let f(u,) = true, f(u,) =
false and, f(u3) = true. A corresponding independent restrained dominating set is shown in

Figure 4.

Clause Components

Variable Components

X X X3

Figure 4. Sample independent restrained dominating set

Now we show that if G has a restrained dominating set, then there is a truth assignment
for SAT. Suppose G has restrained dominating set S. Several observations can be made:
A) ¢j3 € S, because no vertex with deg(1) canbe in V — S. See Lemma 3.1
B) ¢j; € S, since S is independent.

C) ¢j1 € S, since ¢, must have a neighborin{V — S }.
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D) Each ¢j; vertex must be adjacent to a variable component vertex that is in S.

E) At most one vertex can be taken from each variable component because S is independent.
Given a independent restrained dominating set S, choose a truth assignment f:u — S, by setting
f(u;) = trueifu; € Sand f(u;) = falseifu; € S. Every clause ¢ will contain at least one true

literal corresponding to the u; or i, that dominates cj1.
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Chapter 4: Minimal Restrained Dominating Set

In Chapter 3, we considered the Independent Restrained Dominating Set problem. For
further study, we removed the requirement for independence and considered restrained

dominating sets.
4.1 Definition & Characterization

Let G = (V, E) be a graph. A set S € Vis a dominating set if for every vertexu €V — S,
there exists v € S such that uv € E. A set S € Vis a restrained dominating set if every vertex in

V — S is adjacent to a vertex in S and another vertexin V — S.

Lemma 4.1  All vertices where deg(v) = 1 must be an element of S.
Proof.

By the definition of restrained domination, any vertex in IV — S must also have a
neighbor in V — S. A leaf vertex v where deg(v) = 1, that is v has only one neighbor, cannot have

both a neighbor in S and a neighbor in V — S. Therefore, v must be an element of S.

Lemma 4.2  All graphs have a trivial restrained dominating set.
Proof.

Let G = (V, E) be a graph. A trivial restrained dominating set S € V can be formed by
setting S = V. Since all vertices are an element of S, all vertices are dominated, and since

V —S = @, no vertex is required to have a neighborin V — S.

Minimum restrained dominating sets have been studied [2] [5]. This section will

consider a maximum version of the problem. Given that such a trivial solution always exists for
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restrained dominating sets, we choose to add a minimal condition to restrict out study to more
interesting restrained dominating sets. A restrained dominating set S is a minimal restrained
dominating set if no proper subset of S is also a restrained dominating set. Finding the largest

minimal restrained dominating set was listed as an open problem by Hedetniemi [6].

4.2 Properties of Minimal Restrained Dominating Sets on Trees

Theorem 4.1. A restrained dominating set S on a graph G=(V, E) is minimal if and only if every
vertex v in S has at least one of the following properties:

Property 1) deg(v) = 1

Property 2) v has a private neighbor with respect to S.

Property 3) N(v) € Sand Vv € N(v): have property 1 or property 2.

Proof.

Let S be a restrained dominating set. If a vertex has degree 1, it must be an element of S
because it cannot be adjacent to both a vertex in S and V — S. If a vertex v has a private neighbor
with respect to S then it must be an element of S in order to dominate its private neighbor. If all
of a vertex v's neighbors are in S and all of those neighbors have either property one or
property two, then v must also be in S because it has no neighbor in V — S. If all vertices in S
have at least one of the properties, then no vertex can be removed from S (otherwise S would no
longer be a restrained dominating set).

Let S be a restrained dominating set for a graph G=(V,E). Suppose dv:deg(v) > 1 and v
does not have a private neighbor with respect to S and either N(v) € S or 3w € N(v): w does not
have property 1 or w does not have property 2. We show S is not a minimal restrained

dominating set.
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Case 1: deg(v) > 1, v has no private neighbor with respect to S, N(v)  S. The set S — {v} is still a
restrained dominating set because no vertex depends on v to be dominated and v has at least

one neighbor in S and one neighbor in V — S. Therefore, S is not minimal.

Case 2a: N(v) C S, deg(v) > 1, v has no private neighbor with respect to S, and 3w €N(v), w does
not have property 1, w does not have property 2, and w has only one neighbor in S, namely v.
Note that since deg(w) > 1, w has a neighbor in V — S. Since w does not have property 2, no
vertex in N(w) depends on w to be dominated. Therefore, S — {w} is a restrained dominating set,
and S is not minimal.

Case 2b: N(v) C S, and deg(v) > 1, and 3w €N (v): w does not have property 1, w does not have
property 2, and w has more than one neighbor in S. Then, § — {v, w} is a restrained dominating
set, so S is not minimal. Note that since deg(v) > 1 and {N(v) — w} C S then v is still dominated.

Since v had no private neighbors with respect to S, all of its neighbors will still be dominated.

4.3 Dynamic Programming Algorithm

In order to apply the dynamic programming method, we must determine the base
classes of graphs and their corresponding sets. These classes are illustrated in Figure 5 on page
24. Vertices that are a member of the subset are indicated with black shading. The classes are

also described in Table 2 on page 25.

Next, we consider the effects of composing a graph from each class with another graph
of each class. Table 3 gives the results of composing each of the base classes with each other for
the twelve classes given in Figure 5. In this table, an X’ is used to denote a composition which

was not possible because the resulting tree-subset pair did not form a minimal restrained



dominating set. Space limitations prevent us from providing a proof here for all possible

compositions; however, we will give lemmas for several interesting compositions.

Lemma 4.3 A class five subgraph cannot be composed as a child with parent subgraphs of
classes one through six, class eight, and classes ten through twelve.
Proof.
The root vertex of the class five subgraph must be given a private neighbor in the set.
Since the root vertex in classes one through six, class eight, and classes ten through twelve is
already dominated, the root vertex of the class five subgraph can be removed. Therefore the

composition was not minimal.

Lemma 4.4 C(Classes eleven and twelve cannot be composed, as a parent nor a child, with any
class where the root is an element of S.
Proof.
The root vertex of classes eleven and twelve cannot be dominated again. Therefore

composing a subgraph of either class with another subgraph where the root is element of S
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creates a graph which is not minimal. Since the root is dominated by a vertex from a parent or

child subgraph, then a child vertex of the root can be removed.

To ensure all classes were discovered, every combination of the distinguishing
attributes between classes were considered. The distinguishing attributes were whether the
root vertex is an element of S, if the root vertex has a neighbor in S, if the root vertex has a
neighbor in V — S, and whether the root vertex was already dominated, was required as a

private neighbor, or must be dominated by a later composition.
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The algorithm follows the same general structure as the procedure given in Chapter 3,
substituting the class compositions according to Table 3. A singleton vertex in S corresponds to

class one, while a singleton vertex in V — S corresponds to a class seven. Therefore, the initial



Class 1 ‘ Class 6
Class 2
Class 7 Q
Class ?
Class 9
Class 3
Class 10
Class 4
Cl?

Figure 5. Base subgraphs for Minimal Restrained Dominating Set
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Table 2. Descriptions of base subgraphs for Minimal Restrained Dominating Set
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Class # | Description

1 7 € S, v has no neighbors

2 7 € S, 7 has aneighbor in V — S, 7 has no private neighbor except itself

3 7 € S, 7 has a neighbor in V — S, 7 has a private neighbor

4 7 € S, 7 has aneighborin SandinV — S, 7 needs a private neighbor

5 7 € S, has a neighbor in S, no neighbor in V — S, » must be used to dominate
another vertex in V — S, 7~ has no private neighbor, 7’s neighbor does not have
property 1 nor property 2.

6 7 € S, 7 has a neighbor in S, no neighbor in V — S, all neighbors have properties 1 or 2

7 7 &€ S, v has no neighbors, 7 is not dominated

8 7 & S, 7 has aneighbor in S, no neighbor in V — S, 7 is not needed as a private
neighbor

9 7 & S, 7 has aneighborininV — S, 7 is not dominated

10 7 & S, 7 has aneighborin Sand in V — S, 7 is dominated

11 7 & S, 7 has aneighbor in S, but not V — S, 7~ is a private neighbor, 7~ cannot be
dominated again

12 7 & S, 7 has aneighborin Sand in V — S, 7 is a private neighbor, 7~ cannot be
dominated again




Table 3. Subgraph class compositions for Minimal Dominating Set
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1 2 3 4 5 6 8 10 11 12
1 6 X 6 X X 5 X 2 X X
2 4 X 4 X X 4 X 2 X X
3 3 X 3 X X 3 X 3 X X
4 4 X 4 X X 4 X 4 X X
5 4 X 4 X X 4 X 4 X X
6 6 X 6 X X 6 X 4 X X
7 8 8 8 11 11 11 9 9 9 9
8 8 8 8 X X X 10 10 10 10
9 10 10 10 12 12 12 9 9 9 9
10 10 10 10 X X X 10 10 10 10
11 X X X X X X 12 12 12 12
12 X X X X X X 12 12 12 12
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4.4 NP-Completeness Proof For Minimal Restrained Dominating Set

Instance: Graph G, positive integer k.

Question: Does G have a minimal restrained dominating set of cardinality = k?
Theorem 4.2. Minimal Restrained Dominating Set is in the class NP.

Proof.

A witness for Minimal Restrained Dominating Set is a set S of vertices on a graph G. We
can verify that S is a minimal restrained dominating set in polynomial time by verifying that
every vertex in S has one of the properties outlined in Theorem 4.1 and that every vertex in
V — S has a neighbor in S and a neighbor in V — S. Our transformation is from the well-known
NP-complete Exact Cover by 3-Sets (X3C) problem [3].

Exact Cover by 3-Sets

Instance: A finite set X = {x4, x3, X3, ..., X34}, and a collection C of 3-element subsets of X.

Question: Does C contain an exact cover for X? In other words, does there exist a subset C’C C

such that every element of X occurs in exactly one member of C’?

Given an instance of X3C with a set X of variables, |X| = 3q, and a set C of 3-element
subsets of X, |C| = m, generate a corresponding graph with components as follows:
For VY¢; € C construct a subset component Cj such that:
V(G) ={ ¢jn iz ¢j3, Cj4)
E(G) ={ (cjs ci2), (1 cpa), (cz cia)}
For Vx; € X construct an element component X; such that:
V(X:) = { xi1, Xiz, Xi3, Xi4, Xi5, Xis)
E(Xi) = { (xi1, xi2), (xi2, xi3), (Xi3, Xi4), (Xi3, Xi5), (Xis, Xis)}
Construct a set of communication edges CE such that:

CE = {(xi1,C]'1)| Xi € C]}
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Subset Components

Communication
Edges

X. ' X‘ X X‘ X
Xz4 34 g

1, % %

O %O =0 =0 =0

14 X2 36 4 % %6
Element Components

Figure 6. Example construction for Minimal Restrained Dominating Set

Setk = 11q + 3m. We show there is an exact cover for X if and only if G has a minimal
restrained dominating set of cardinality > 11q + 3m. Figure 6 shows an example construction

for a sample instance of SAT where X = {x4, x5, X3, X4, X5, X5} and

C= {{xl' X3, xS}l {X3, X4, xS}l {xl' X3, x6}l {xZ' X4, x6}}'

Suppose C has an exact 3-cover of C”. Then

(U V(16| G € € U {UTL V(o carcia)| € € C'YU {USE, V (xis, Xias Xis, Xi6) |
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is a minimal restrained dominating set of cardinality 11q + 3m. In other words, to form the
minimal restrained dominating set, take the vertices {cj2, ¢j3, cja} for every subset element where
the corresponding subset is not a member of the exact cover, and the vertices {cj1, cjs} for every
subset element where the corresponding subset is a member of the exact cover. Also include the
vertices {xi3, Xis, Xis, Xis} for every element subset. This construction can be accomplished in
polynomial time. In our example, C' = {c;, ¢, } is an exact cover, and the corresponding minimal
restrained dominating set of size 34 is shown in Figure 7. Each vertex that is a member of the

set is shaded black.

Subset Components

Communication
Edges

X 1,
X 12 ,
X1 Yig X, X2 X3, Xaq g X5 %5 Xss %o, Xos
X 4 X, 4 34 X4y A s,
X16 Xz6 X36 X46 X56 x%
Element Components

Figure 7. Sample minimal restrained dominating set.
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Conversely, assume G has a minimal restrained dominating set S of cardinality > k.
Several observations can be made regarding set S in G:
A) All leaf vertices are in S.
B) At most three vertices from each subset component are in S. If all four vertices in the
component are in S then the middle two vertices, cjz and cj3, can be removed from the set
(therefore the set was not minimal).
C) If three of the four vertices from each subset component are in S, then vertex cj; must be the
vertex not in S. If, instead, vertex ¢j; is in S, then either vertex cj; or cj3 must not be in S. In that
case, however, neither cj2 nor cj3 would have a neighbor in V — §, and G would no longer be a
restrained dominating set.
D) At most four vertices from each element component can be in S. All six vertices cannot be in §
because vertices x;; and x;z could be removed; therefore the component was not minimal.
Suppose five vertices from each element component are taken. If any vertex other than the root
is left out, it will not have a neighbor in VV — S. If the root is out, then vertices x;3 and x;, could be
removed as well.
E) If four vertices are taken from each element component, then those vertices must be {x;3, X,
Xis, Xis}- Any other set of vertices from the element results in either a vertex not having a
neighbor in V — S, or additional vertices that could be removed to make the set minimal. Figure
4 illustrates each of these cases. Each of the vertices surrounded by dotted lines is either a

vertex in S that can be safely removed, or a vertex in V — S which lacks a neighborin IV — S.
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i6
Figure 8. Element components where four vertices are taken

F) If four vertices are taken from each element component, then the root of the element, vertex
xi1, must be joined to a vertex in S from a subset component. That subset component cannot
have three vertices in S.

Given these observations, let y be the number of element components where four
vertices are taken. Each of these elements must have its root vertex, c¢j;, dominated by the
corresponding subset component. By the construction, each subset root is adjacent to only
three element roots. Therefore, there must be at least y/3 subset components where just two

vertices are taken. The number of components in of each type are given in Table 4.
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Table 4. Number of occurrences for ech component type

Component Type # of components
Element component where all four vertices y
are taken
Element components where less than four 3g—y

vertices are taken

Subset components containing the root >y/3

Subset components not containing the root <m-y/3

Therefore, at most the number of vertices in S is given by:

2(§)+3(m—§)+4y +3(y—3q) =

2
9q + 3m + ld
3
To achieve 11q + 3m, y must be equal to 3q and all element components have exactly
four vertices in S, and exactly% = q subset components have only two vertices in S. The subset

components where the roots are taken correspond to subsets of C that form an exact cover for

X.

Corollary 4.1 Minimal restrained dominating set is NP-complete for bipartite graphs.
Proof.

The graph in the construction is bipartite.
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Chapter 5: Future Work

There are several areas to explore for future work. Our NP-completeness proof for
minimal restrained domination serves to add further data points in the effort to determine what
separates NP-complete problems from problems that can be solved with polynomial algorithms.
Interestingly, for bipartite graphs, finding a largest minimal dominating set has a known
polynomial algorithm [4]; however, as we have shown, adding the restrained requirement
moves the problem into the set of NP-complete problems. On the other hand, our NP-
completeness proof for the existence of independent restrained dominating set was not
restricted to bipartite graphs. The upper minimal independent domination number is
polynomial for bipartite graphs. Is independent restrained dominating set NP-complete for
bipartite graphs?

The notion of an irredundant restrained set could be explored for both graphs and trees.
In such a set S, every vertex in S has a private neighbor, and every vertexin IV — S has a

neighbor thatis alsoin V — S.
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